ANUNCIO

El ADN como medio para almacenar gran cantidad de datos informáticos: ¿una realidad muy pronto?

A breakthrough study takes significant step forward in the quest to develop a ADN-based storage system for digital data.

Digital datos está creciendo a un ritmo exponencial en la actualidad debido a nuestra dependencia de los dispositivos y requiere un almacenamiento sólido a largo plazo. El almacenamiento de datos se está convirtiendo lentamente en un desafío porque la tecnología digital actual no puede proporcionar una solución. Un ejemplo es que se han creado más datos digitales en los últimos dos años que en toda la historia de las computadoras, de hecho se están creando 2.5 quintillones de bytes {1 quintillón de bytes = 2,500,000 Terabytes (TB) = 2,500,000,000 Gigabytes (GB)} de datos todos los días del mundo. Esto incluye datos sobre sitios de redes sociales, transacciones bancarias en línea, registros de empresas y organizaciones, datos de satélites, vigilancia, investigación, desarrollo, etc. Estos datos son enormes y no están estructurados. Por lo tanto, ahora es un gran desafío abordar los enormes requisitos de almacenamiento de datos y su crecimiento exponencial, especialmente para las organizaciones y corporaciones que requieren un almacenamiento sólido a largo plazo.

Las opciones disponibles actualmente son disco duro, discos ópticos (CD), tarjetas de memoria, unidades flash y la unidad de cintas más avanzada o discos BluRay ópticos que almacenan aproximadamente hasta 10 Terabytes (TB) de datos. Dichos dispositivos de almacenamiento, aunque se utilizan comúnmente, tienen muchas desventajas. En primer lugar, tienen una vida útil de baja a media y deben almacenarse en condiciones ideales de temperatura y humedad para poder durar muchas décadas y, por lo tanto, requieren espacios de almacenamiento físicos especialmente diseñados. Casi todos estos consumen mucha energía, son voluminosos y poco prácticos y pueden dañarse con una simple caída. Algunos de ellos son muy caros, a menudo están plagados de errores de datos y, por lo tanto, no son lo suficientemente robustos. Una opción que ha sido aceptada universalmente por la organización se llama computación en la nube, un acuerdo en el que una empresa básicamente contrata un servidor "externo" para manejar todos sus requisitos de almacenamiento de datos y TI, conocido como la "nube". Una de las principales desventajas de la computación en la nube son los problemas de seguridad y privacidad y la vulnerabilidad a los ataques de piratas informáticos. También hay otros problemas como los altos costos involucrados, el control limitado por parte de la organización matriz y la dependencia de la plataforma. La computación en la nube todavía se considera una buena alternativa para el almacenamiento a largo plazo. Sin embargo, parece que la información digital que se genera en todo el mundo ciertamente está superando nuestra capacidad para almacenarla y se necesitan soluciones aún más sólidas para atender esta avalancha de datos y, al mismo tiempo, proporcionar escalabilidad para tener en cuenta las necesidades de almacenamiento futuras.

¿Puede el ADN ayudar en el almacenamiento de la computadora?

Nuestro ADN (Deoxyribonucleic acid) is being considered as an exciting alternative medium for digital data storage. ADN is the self-replicating material present in nearly all living organisms and is what constitutes our genetic information. An artificial or synthetic ADN is a durable material which can be made using commercially available oligonucleotide synthesis machines. The primary benefit of DNA is its longevity as a ADN lasts 1000 times longer than silicon (silicon-chip – the material used for building computadoras). Sorprendentemente, solo un milímetro cúbico de ADN can hold a quintillion of bytes of data! ADN is also an ultracompact material which never degrades and can be stored in a cool, dry place for hundreds of centuries. The idea of using DNA for storage has been around for a long time way back to 1994. The main reason is the similar fashion in which information is being stored in a computer and in our ADN – since both store the blueprints of information. A computer stores all data as 0s and 1s and DNA stores all data of a living organism using the four bases – thymine (T), guanine (G), adenine (A) and cytosine (C). Therefore, DNA could be called a standard storage device, just like a computer, if these bases can be represented as 0s (bases A and C) and 1s (bases T and G). DNA is tough and long-lasting, the simplest reflection being that our genetic code – the blueprint of all our information stored in DNA – is efficiently transmitted from one generation to next in a repeated manner. All software and hardware giants are keen on using synthetic DNA for storing vast amounts to achieve their goal of solving long-term archival of data. The idea is to first convert the computer code 0s and 1s into the DNA code (A, C, T, G), the converted DNA code is then used to produce synthetic strands of DNA which can then be put into cold storage. Whenever required, DNA strands can be removed from cold storage and their information decoded using DNA sequencing machine and DNA sequence is finally translated back to binary computer format of 1s and 0s to be read on the computer.

Se ha mostrado1 that just a few grams of DNA can store quintillion byte of data and keep it intact for up to 2000 years. However, this simple understanding has faced some challenges. Firstly, it is quite expensive and also painfully slow to write data to DNA i.e. the actual conversion of 0s and 1s to the DNA bases (A, T, C, G). Secondly, once the data is “written” onto the DNA, it is challenging to find and retrieve files and requires a technique called ADN sequencing – process of determining the precise order of bases within a ADN molecule -after which the data is decoded back to 0s and 1s.

Un estudio reciente2 por científicos de Microsoft Research y la Universidad de Washington han logrado un "acceso aleatorio" sobre el almacenamiento de ADN. El aspecto de “acceso aleatorio” es muy importante porque significa que la información se puede transferir hacia o desde un lugar (generalmente una memoria) en el que se puede acceder directamente a cada ubicación, sin importar en qué lugar de la secuencia. Con esta técnica de acceso aleatorio, los archivos se pueden recuperar del almacenamiento de ADN de manera selectiva en comparación con antes, cuando dicha recuperación requería la necesidad de secuenciar y decodificar un conjunto de datos de ADN completo para encontrar y extraer los pocos archivos que se deseaban. La importancia del "acceso aleatorio" aumenta aún más cuando la cantidad de datos aumenta y se vuelve enorme, ya que reduce la cantidad de secuenciación que debe realizarse. Es la primera vez que se muestra el acceso aleatorio a una escala tan grande. Los investigadores también han desarrollado un algoritmo para decodificar y restaurar datos de manera más eficiente con más tolerancia a los errores de datos, lo que hace que el procedimiento de secuenciación también sea más rápido. En este estudio se codificaron más de 13 millones de oligonucleótidos de ADN sintético, que eran datos de 200 MB de tamaño que constan de 35 archivos (que contienen video, audio, imágenes y texto) con un tamaño de 29 KB a 44 MB. Estos archivos se recuperaron individualmente sin errores. Además, los autores han ideado nuevos algoritmos que son más robustos y tolerantes a errores al escribir y leer las secuencias de ADN. Este estudio publicado en Nature Biotechnology en un avance importante que muestra un sistema viable a gran escala para el almacenamiento y la recuperación de ADN.

DNA storage system looks very appealing because it is having high data density, high stability and is easy to store but it obviously has many challenges before it can be universally adopted. Few factors are time and labour-intensive decoding of the DNA (the sequencing) and also synthesis of ADN. The technique requires more accuracy and broader coverage. Even though advances have been made in this area the exact format in which data will be stored in the long-term as ADN is still evolving. Microsoft has vowed to improve production of synthetic DNA and address the challenges to design a fully operational ADN sistema de almacenamiento para 2020.

***

{Puede leer el trabajo de investigación original haciendo clic en el enlace DOI que figura a continuación en la lista de fuentes citadas}

Fuentes)

1. Erlich Y y Zielinski D 2017. DNA Fountain permite una arquitectura de almacenamiento robusta y eficiente. Ciencias. 355 (6328). https://doi.org/10.1126/science.aaj2038

2. Organick L y col. 2018. Acceso aleatorio en almacenamiento de datos de ADN a gran escala. Biotecnología de la naturaleza. 36. https://doi.org/10.1038/nbt.4079

Equipo SCIEU
Equipo SCIEUhttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Avances significativos en la ciencia. Impacto en la humanidad. Mentes inspiradoras.

Suscríbete a nuestro boletín

Para actualizarse con las últimas noticias, ofertas y anuncios especiales.

Artículos Populares

VIH/SIDA: una vacuna de ARNm se muestra prometedora en un ensayo preclínico  

Desarrollo exitoso de vacunas de ARNm, BNT162b2 (de Pfizer/BioNTech) y...

Un entorno único similar a un útero genera esperanza para millones de bebés prematuros

Un estudio ha desarrollado y probado con éxito un...

Cambio climático y olas de calor extremas en el Reino Unido: 40°C registrados por primera vez 

El calentamiento global y el cambio climático han provocado...
- Publicidad -
94,488VentiladoresMe gusta
47,677SeguidoresSeguir
1,772SeguidoresSeguir
30AbonadosSuscríbete