ANUNCIO

Uso de nanocables para producir baterías más seguras y potentes

El estudio ha descubierto una forma de fabricar baterías que usamos todos los días para que sean más resistentes, potentes y seguras.

El año es 2018 y nuestra vida diaria ahora se alimenta de diferentes dispositivos que funcionan con electricidad o con baterías. Nuestra dependencia de los dispositivos y dispositivos que funcionan con baterías está creciendo de manera espectacular. A agresión con lesiones es un dispositivo que almacena energía química que se convierte en electricidad. Las baterías son como pequeños reactores químicos que tienen una reacción que produce electrones llenos de energía que fluyen a través del dispositivo externo. Ya sean teléfonos celulares o computadoras portátiles u otros vehículos incluso eléctricos, las baterías, generalmente de iones de litio, son la principal fuente de energía para estas tecnologías. , existe una demanda continua de baterías recargables más compactas, de alta capacidad y seguras.

Las baterías tienen una historia larga y gloriosa. El científico estadounidense Benjamin Franklin utilizó por primera vez el término "batería" en 1749 mientras realizaba experimentos con electricidad utilizando un conjunto de condensadores conectados. El físico italiano Alessandro Volta inventó la primera batería en 1800 cuando apiló discos de cobre (Cu) y zinc (Zn) separados por un paño empapado en agua salada. La batería de plomo-ácido, una de las baterías recargables más antiguas y duraderas, se inventó en 1859 y todavía se utiliza en muchos dispositivos incluso hoy en día, incluido el motor de combustión interna en los vehículos.

Las baterías han recorrido un largo camino y hoy en día vienen en una variedad de tamaños, desde grandes megavatios, por lo que en teoría pueden almacenar energía de granjas solares e iluminar mini ciudades o podrían ser tan pequeñas como las que se usan en los relojes electrónicos. maravilloso, ¿no es así? En lo que se denomina batería primaria, la reacción que produce el flujo de electrones es irreversible y, finalmente, cuando se consume uno de sus reactivos, la batería se descarga o se agota. La batería primaria más común es la batería de zinc-carbono. Estas baterías primarias eran un gran problema y la única forma de abordar el desecho de tales baterías era encontrar un método en el que pudieran reutilizarse, es decir, haciéndolas recargables. El reemplazo de baterías por una nueva era obviamente impráctico y, por lo tanto, a medida que las baterías se volvían más poderoso y grande se volvió casi imposible por no mencionar muy caro reemplazarlos y deshacerse de ellos.

Las baterías de níquel-cadmio (NiCd) fueron las primeras baterías recargables populares que usaban un álcali como electrolito. En 1989 se desarrollaron baterías de níquel-metal hidrógeno (NiMH) que tenían una vida más larga que las baterías de NiCd, sin embargo, tenían algunos inconvenientes, principalmente que eran muy sensibles a la sobrecarga y al sobrecalentamiento, especialmente cuando se cargaban al máximo. tuvo que cargarse lenta y cuidadosamente para evitar cualquier daño y requirió más tiempo para cargarse con cargadores más simples.

Invented in 1980, Lithium-ion batteries (LIBs) are the most commonly used batteries in consumer electronic devices today. Lithium is one of the lightest elements and it has one of the largest electrochemical potentials, therefore this combination is ideally suited for making batteries. In LIBs, lithium ions move between different electrodes through an electrolyte which is made of salt and ecológicos solvents (in most traditional LIBs). Theoretically, lithium metal is the most electrically positive metal having very high capacity and is the best possible choice for batteries. When LIBs are underdoing recharging, the positively charged lithium ion becomes lithium metal.Thus, LIBs are most popular rechargeable batteries for use in all kinds of portable devices owing to their long life and high capacity. However, one major problem is that the electrolyte can evaporate easily, causing a short-circuit in the battery and this can be a fire hazard. In practice, LIBs are really unstable and inefficient as over time the lithium dispositions become non-uniform.LIBs also have low charge and discharge rates and safety concerns make them unviable for many high power and high capacity machines, example electric and hybrid electric vehicles. LIB has been reported to exhibit good capacity and retention rates at very rare occasions.

Por lo tanto, no todo es perfecto en el mundo de las baterías, ya que en los últimos años se han marcado muchas baterías como inseguras porque se incendian, son poco fiables y, a veces, ineficaces. Los científicos de todo el mundo están en la búsqueda de construir baterías que sean pequeñas, recargables de manera segura, más livianas, más resistentes y al mismo tiempo más poderosas, por lo que el enfoque se ha desplazado a los electrolitos de estado sólido como la alternativa potencial. Manteniendo esto como objetivo, los científicos han probado muchas opciones, pero la estabilidad y la escalabilidad han sido un obstáculo para la mayoría de los estudios. Los electrolitos poliméricos han mostrado un gran potencial porque no solo son estables sino también flexibles y económicos. Desafortunadamente, el problema principal con tales electrolitos poliméricos es su baja conductividad y propiedades mecánicas.

En un estudio reciente publicado en ACS Nano Letters, los investigadores han demostrado que la seguridad de una batería e incluso muchas otras propiedades pueden mejorarse agregándole nanocables, haciendo que la batería sea superior. Este equipo de investigadores de la Facultad de Ciencia e Ingeniería de Materiales de la Universidad de Tecnología de Zhejiang, China, se basó en su investigación anterior en la que fabricaron nanocables de borato de magnesio que exhibían buenas propiedades mecánicas y conductividad. En el estudio actual, comprobaron si esto también sería cierto para las baterías cuando tales nanocables se añaden a un electrolito de polímero de estado sólido. El electrolito de estado sólido se mezcló con 5, 10, 15 y 20 pesos de nanocables de borato de magnesio. Se vio que los nanocables aumentaron la conductividad del electrolito de polímero de estado sólido, lo que hizo que las baterías fueran más resistentes y resistentes en comparación con las anteriores sin nanocables. Este aumento en la conductividad se debió al aumento en el número de iones que pasan y se mueven a través del electrolito y a un ritmo mucho más rápido. Toda la configuración era como una batería pero con nanocables añadidos. Esto mostró una mayor tasa de rendimiento y un aumento de los ciclos en comparación con las baterías normales. También se realizó una importante prueba de inflamabilidad y se comprobó que la batería no se quemó. Las aplicaciones portátiles ampliamente utilizadas en la actualidad, como los teléfonos móviles y las computadoras portátiles, deben actualizarse con la energía almacenada máxima y más compacta. Esto obviamente aumenta el riesgo de descarga violenta y es manejable para tales dispositivos debido al pequeño formato de las baterías necesarias. Pero a medida que se diseñan y prueban aplicaciones más grandes de baterías, la seguridad, la durabilidad y la potencia adquieren una importancia suprema.

***

{Puede leer el trabajo de investigación original haciendo clic en el enlace DOI que figura a continuación en la lista de fuentes citadas}

Fuentes)

Sheng O y col. 2018. Electrolitos de estado sólido multifuncionales habilitados para nanocables Mg2B2O5 con alta conductividad iónica, excelentes propiedades mecánicas y rendimiento ignífugo. Nano Letras. https://doi.org/10.1021/acs.nanolett.8b00659

Equipo SCIEU
Equipo SCIEUhttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Avances significativos en la ciencia. Impacto en la humanidad. Mentes inspiradoras.

Suscríbete a nuestro boletín

Para actualizarse con las últimas noticias, ofertas y anuncios especiales.

Artículos Populares

Vacunas contra la malaria: ¿Influirá la nueva tecnología de vacunas de ADN en el curso futuro?

El desarrollo de una vacuna contra la malaria ha sido uno de los más importantes ...

SARAH: la primera herramienta generativa de la OMS basada en IA para la promoción de la salud  

Para aprovechar la IA generativa para la salud pública,...

La Vía Láctea: una mirada más detallada de la deformación

Los investigadores de la encuesta Sloan Digital Sky han...
- Publicidad -
94,514VentiladoresMe gusta
47,678SeguidoresSeguir
1,772SeguidoresSeguir
30AbonadosSuscríbete